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In probability there are a set of general propositions that are not self-evident but can be proved by a chain
of reasoning. In this chapter we introduce a set of theorems that are central towards probability theory. This
chapter is lighter than some of the others and it is worth making sure you follow the ideas presented in lecture
(especially with respect to the central limit theorem).

Inequalities

The following inequalities are useful when you know very little about your distribution, but you would still
like to make probabilistic claims. They most often show up in proofs.

Markov’s Inequality

If X is a non-negative random variable:

E[X]

P(X>a) < foralla >0
a
Chebyshev’s Inequality
If X is a random variable with E[X] = p and Var(X) = %
G2
P(|X—/.L|2k)§k— forallk >0

Law of Large Numbers

Consider IID random variables X;,X;... such that E[X;] = u and Var(X;) = o2. Then for any € > 0, the
Weak Law of Large Numbers states:
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The Strong Law of Large Numbers states:
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Central Limit Theorem

The central limit theorem proves that the averages of equally sized samples from any distribution themselves
be normally distributed. Consider IID random variables X, X ... such that E[X;] = u and Var(X;) = 6>. Let
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Mathematically, the central limit theorem states:
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It is often expressed in terms of the standard normal, Z:
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At this point you probably think that the central limit theorem is awesome. But it gets even better. With some
algebraic manipulation we can show that if the sample mean of IID random variables is normal, it follows
that the sum of equally weighted IID random variables must also be normal. Let’s call the sum of IID random
variables Y:
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In summary, the central limit theorem explains that both the sample mean of IID variables is normal (re-
gardless of what distribution the IID variables came from) and that the sum of equally weighted IID random
variables is normal (again, regardless of the underlying distribution).

Example 1

Say you have a new algorithm and you want to test its running time. You have an idea of the variance of the
algorithm’s run time: 62 = 4sec” but you want to estimate the mean: p = rsec. You can run the algorithm
repeatedly (IID trials). How many trials do you have to run so that your estimated runtime = ¢ +0.5 with 95%
certainty? LetX; be the run time of the i-th run (for 1 <i < n).
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By the central limit theorem, the standard normal Z must be equal to:
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Now we rewrite our probability inequality so that the central term is Z:

'L X —-0.5 "X 0.5
0.95=P(—0.5 < ==120 1 <0.5) = P( \/;’gzlfn' ’—ng\/ﬁ)

B (—Os\f \le X; \f \/ﬁ)ip(—o.s\/ﬁ<Z;l:lxi7@@<0.5\/ﬁ)
- 2 2 2 2~ 2yn Yn 2 - 2
_p 05V _ XL lx—m O.Sﬁ

( 2 - 2\/n - 2 )
_P<—0.25f<z<05\f)

And now we can find the value of n that makes this equation hold.
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Thus it takes 62 runs. If you are interested in how this extends to cases where the variance is unknown, look
into variations of the students’ t-test.

Example 2

You will roll a 6 sided dice 10 times. Let X be the total value of all 10 dice = X; + X, +--- + X;0. You win
the game if X <25 or X > 45. Use the central limit theorem to calculate the probability that you win.

Recall that E[X;] = 3.5 and Var(X;) = 3.

P(X <250rX >45)=1-P(25.5<X <44.5)
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— (20(1.76) — 1) ~ 2(1 — 0.9608) = 0.0784




